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DOMAINS OF ATTRACTION IN THE PROBLTM OF THE PLANE MOTION 
OF SYSTEMS WITH ROLLING* 

V.G. VERBITSKII AND L.G. LOBAS 

A class of mechanical systems with rolling, of gyrostat type, consisting 
of a main body (a carrier, platform or a vehicle fl;ame) and bodies rolling 
on a fixed horizontal plane and imparting a longitudinal velocity U= const 
to the main body, is considered. A non-linear mechanism of elastic 
interaction between the bodies in contact based on the Rocard /l/ axioms 
is adopted, and the side reactions are, in this case, monotonic functions 
of the drift angles. Qualitative analysis of the phase trajectories is 
used to show that the region of attraction of the zero solution of the 
equations of perturbed motion is unbounded. The conditions are found 
under which the dcanain of attrpction is represented by the phase plane. 
A necessary condition for the domain of attraction of the unperturbed 
solution of a coarse dynamic system to be bounded is given in terms of 
the Poincarg index for the singularities lying at the boundary of the 
domain of attraction. A characteristic phase pattern is constructed for 
specific values of the system parameters. 

The problem of plane parallel motion of a constrained gyrostat with rolling was formulated 
in /2/. We shall therefore:limit ourselves to a brief explanation concerning the purpose of 
the present study. Two geometrically and dynamically symmetrical bodies rotate about two 
parallel axes rigidly coupled to the main body. The rotating bodies are in contact with a 
fixed horizontal plane. We denote by x and y the abscissa and ordinateofthe centre of mass 
D of the gyrostat in the inertial coordinate system, 6 is the course angle,@= 6', V= Z'COS@+ 
y’sin 6, u = --~'sin 6 + I/' cos 6 are the lonoitudinal and transverse velocities of the point D (the 
quantities v and u are quasivelocities) , m and I are the mass and central vertical moment of 
inertia of the gyrostat., 1,. I, are the distances between the point D and the middle of the 
front and back axis respectively, and Z= 1, +ll_ N,, N, are the statid oomponents of the vertical 
reactions. If the bodies carried are inertialess and elastically deformable, they serve as 
a source of specific forces acting on the main body. According to Rocard /l/ the side reac- 
tions Yi are functions of the so-called drift angles 

6, = --arctg [(U + 2,0)/v], 6, = arctg I(--u + Z,O)l~l 

We shall restrict ourselves to the case of monotonic dependence Yi= Yi(&), assuming that 

k,(Qr d (YJ.vJ/d$> o, lim 
++- 

Y,/.V, = ci = cou*t 

Yi(o)= 0, Yi' (0) .= oi 

and write the equations of motion (1) of /2/ in the form 

(1) 

o' = P (0, u), U' = Q (0, 4 
P (0, U) = (Y,z, - Y,l,)lI, Q (0, 4 = (Y, + Y3/m - ~0 

(2) 

System (2) describes the motion of the representative point (0.11) in the two-dimensional 
phase space F(o,u). The equilibrium state in the space F corresponds to the steady motion 
of the gyrostat. The number of such states depends on the form of the function Yi(6i) /2/. 
We take the rectilinear motion along the Ox axis as the unperturbed motion. 'The point (0,O) 
corresponds to the unperturbed solution of (2) in the ou plane. Equations (2) for this point 
will represent the equations in variations. In the three-dimensional ph'ase space Q, (U, 6, 6') 
where U= I/' , the zero solution of (2) corresponds to the one-dimensional manifold V= ~e,e'= 
o of equilibrium states /3/. The physical meaning of the latter consists of the arbitrari- 
ness of the straight line along which a steady motion of the gyrostat is possible. 

We know /l/ that when a,~,- a,l,<O (insufficient rotatability), i.e. when k,(O)< k,(O) /2j, 
the origin of coordinates of the OY plane is asymptotically stable for vv>o, while when 
0111 - a*& > 0 (excessive rotatability) it is stable only for v< v, = 1 [ala,m-'(u,l, - u&-~]"'. A 
proposition is developed in /2/ stating that the loss of stability of the origin of coordin- 
ates regarded as a singularity of the equations of perturbed motion of a rolling gyrostatwith 
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excessive rotatability is connected, at the supercritical velocities, with the behaviour of 
the singularities different from the origin of coordinates. In the present paper the problem 
of the structure of the domains of attraction of the zero solution is solved by analysing the 

phase trajectories of system (2) with conditions (1). Just as the conditions of asymptotic 
Lyapunov stability depend on the relation connecting k, and k,. which determine the behavizlr 
of the functions ~~(6,) at the zero, so the form of the domains of attraction depends on the 
relations connecting c1 with cp determining the behaviour of the functions Y,(6,) at infinitlr. 
The construction of tne latter is based on the following assertion. 

Theorem. If the origin of coordinates is asymptotically stable and conditions (1) are 

satisfied, then the domain of attraction of the unperturbed solution is unbounded. The whole 

phase plane will be a domain of attraction if and only if c,<c,. 

Proof. Let us find the expression for the divergence of the vector velocity field define-i 

by system (2) 

div(P, Q)= - + 

By virtue of the first condition of (1) we have div(P,Q)<O on the whole phase plane. 

According to the Bendickson criterion this implies that there are no closed contours wholly 

composed of the phase trajectories of system (2) in any singly connected region of the phase 

plane. In /4/ it was shown that the boundary of the whole domain of attraction of the un- 

perturbed solution of the autonomous system consists of whole trajectories, or of segments of 

trajectories. Consequently the domain of attraction of the zero solution of (2) is unbounded. 

To prove the second part of the theorem we shall analyse the behaviour of the phase 

trajectories in the ou plane. Let us first determine the sets of points at which w'= 0 or 
U' = 0. 

The condition o' = 0 reduces to the relation Y,IN, = Y,I'N, where Nl = mgl,:l, N, =: mgl,il. 

Since the geometrical position of the points in the OY plane corresponding to the condition 

elgn6,= sign& lies between the straight lines U= --l,o, U= 2,~ , and the relation 6, = 6, is true 

at every point of the u axis, it follows that the set o'= 0 in question lies totally between 

the straight lines U = --I,o, U = l,o and passes through the origin of coordinates. When u,,= 

--vtg6,, the set intersects the u axis, provided that the graphs depicting the depedence 

Y, (6i)lNi have a point of intersection when 6, = 6, = 6,iO. 

The curve 

l,Y* (- arctg J!++ 1,Y+?+- --;,i,o ) =O 

has the following angular coefficient at the origin of coordinates: 

k, = -(a,l,? f a,l,2)i(a,l, - a& 

When k, (0) <k, (0) , we have k, > 0 and if the graphs depiciting the dependence Y, (6,)/N, 
have no points of intersection, then the whole curve ((0, u):o'= 0) lies in the first and third 

quadrant. When k, (0) > k, (0) and there are no intersections, curve (3) lies in the second and 

fourth quadrant. 
We have the following relation for the set of points of the phase plane at which u'= U : 

and from this it follows that the curve ((o,u):u'= 0) tends to the vertical asymptote o = wt 

and w = -w, as u----m and II- +ca respectively. Here wI = (cl.V, +- c&',) m-1K1. The angular 

coefficient of the curve is given at the origin of coordinates by the expression 

ii,, = -(mG - n*z, - (12/2)l(at f (I?) 

If o,l, - nPIP < 0 and v < u,, then curve (4) intersects the w axis when w = cu),. 

Here we have 

c,:! = (U*i, - a,l,) m-l, muOl = Y1 (--arctg I‘K'W,) T Yz (arctg 1,U%,) 

If on the other hand a,l,-anll,<O and v>U, , or a,~,-&>JJ, then curve (4) lies wholly 

in the second and fourth quadrant. 
The points of intersection of (3) and (4) represent the singularities of the system (2). 

The relative position of these curves near the singularity determines their type. Thus we 

have the following results for the origin of coordinates. Let us denote by a,, a,, the angle 

of inclination of the curves (3), and hence of (4), to the abscissa at the origin of coordin- 

ates. 
Let n,l, - aplg > 'J , whereupon k,<O. ko<O. If n::! < Z" < a,, < .7. then the direction of the 

phase trajectories of system (2) in a sufficiently small neighbourhood of the origin of co- 

ordinates is such, that the point (0,O) is a stable node. If on the other hand;rZ <?,~<Z*W~..~. 
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then the origin of coordinates is a saddle. The change from the node to the saddle takes 
place when V= L‘,. 

When a,i, - ~~1, < 0 we have k,>O, k, = k,(u) changes its sign on passing through U= u,, and 

k, (0) > k,. When V<V, we have 0 <cc,,< a, <nl2, and the point (0,O) is a stable node. When 

EJ E (%1 u*) where 
c*? = l([(alll?+- Q,Z~~)/~ + (a, + a,)lm)?/4 - a,azlzm-'l-') (I$, - a,Z,)-' 

we have 0 <a, < n/z, II'?<& < II. In this case an isocline k,exists, situated below the isocline 
k, which "knocks" the phase trajectories into the origin of coordinates. Otherwise the node 
at the origin of coordinates would be transformed at U= "I into a focus, and this is impos- 
sible since the linear theory tells us that the point (0,O) becomes a focus when v>u,>v,. 
If U> U*, then the direction of the phase trajectories of system (2) on the curves (3) and (4) 
are the same as in the case ol<v<vr, but the origin of coordinates becomes a stable focus. 

When ~~z,-a~l,=O we always have k,<O, v1 = 0, k, = CC and the point (0,O) is a stable 
node when 0 <v<u,, and a stable focus when u > U.. 

Let us now analyse the possible relative dispositions of the curves (3) and (4) over the 
whole ou plane. 

lo. If k, (0) > k, (O), cl > ca, i.e. the dependence of thespecific side reactions YiINi on 
the drift angles 6i has the form shown in Fig.1 (here and henceforth a dashed line corresponds 
to i=l and the solid line to i = 2). then from the behaviour of the curve Y= Y(6,- 6,) it 
follows /2/ that when u<v+ , we have a pair of singularities (in the second and fourth quad- 
rant) in the ou plane. The singularities represent the points of intersection of the curves 
(3) (the solid line in the lower part of Fig.1) and (4) (the dashed line). From the direction 

Fig.1 Fig.2 

Fig.3 Fig.4 
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of the vector field it follows that the singuarities are saddles /5/ and also, that phase 
trajectories exist which lie wholly in the first and third quadrant and go to the origin of 
coordinates. When the velocity u increases, the saddle points move towards the origin of 
coordinates and merge with it when U= v+. When u>v+, we have a unique saddle point at the 
origin of coordinates. The boundary of the domain of attraction of the zero solution of (2) 
represents, at U<U, , the separatrices entering the saddle points. The separatrices define, 
within the second and fourth qudrant, bounded regions such that the phase trajectories lying 
within them must remain there. The separatrices emerging from the saddle points and lying 
within the regions indicated have the origin of coordinates as the 

2O. 
o-limit point /6/. 

When k,(O)<k,(O),c,>c,, the dependence of the quantities Yi:N, on hi is shown in 
Fig.2. In this case we also have a pair of saddle points, but when v increases, the saddle 
points cannot arrive at the origin of coordinates to upset its stability. Their limiting 
position as v-t-00 corresponds to the point of intersection of the curve (3) with the "axis. 
The separatrices arriving at the saddle points restirct the domain of attraction of the origin 
of coordinates. When the velocity v increases, (4) changes its form from a to b, losing its 
extrema. 

3O. When k,(O)<k,(O),c,<ct (Fig.3) a unique singularity exists at the origin of coordin- 
ates, asymptotically stable when O<V<+OO. The point (0,O) can be either a node, or a focus. 
Let us consider the case of a focus. Using the properties of the vector velocity field we 
can show that the domain of attraction of the origin of coordinates consists of the whole 
phase plane. Indeed, the phase trajectory having emerged from the position a arrives at 
point b on (3), then at point c on the o axis, and by virtue of the symmetry of the proper- 
ties of the vector field, at point d. 

We shall use the method of reductio ad absurdum to show that the spiral coils in. If 
this were not true, if for some initial values the spiral ad had uncoiled (d<a<O), then the 
spiral and the segment [a, dl together would form a closed contour on the o axis which would 
not contain even a single trajectory. This contradicts the fact that the domain of attraction 
of the origin of coordinates is unbounded. 

A situation in which the origin of coordinates is a node, 

u,n/c is analogous to the one described above for subcritical veloci- 
ties. 

4O. Let k, (0) >k* (O),G <CZ (Fig.4) . When u<u+ , we have 
a unique, asymptotically stable singularity of (2), namely a 
node at the origin of coordinates. The phase trajectories at 
infinity coil into spirals. This follows from the fact that 
the isocline ki, i.e. the curve Q (0, u)/P (0, u)= const>O, has the 
form shown in the lower part of Fig.4. The fact that the iso- 
clines have vertical asymptotes when o tends to some finite 
value mki s follows from the fact that the forces and moments 
in (2) are bounded functions of the coordinates. If we assume 
that the spirals in questionouncoil, we shall arrive at the 
contradiction mentioned in 3 . Thus the domain of attraction 
constitutes the whole phase plane, This proves the theorem. 

Fig.5 'shows the behaviour of the actual phase trajectories 
of system (2). The figure is constructed for (I~= (I, = 57300H, m = 

Fig.5 
2527 kg, I = 6550 kgmm2, I, = 1.73 m, I, == 1.5 m, I = 3.23 m, cI == 0.8, 
c* = 0.7, " = 19 m/set. 

In conclusion we note that the requirement that the diverg- 
ence of the vector field should be negative over the whole field 

is not necessary for the domain of attraction of the unperturbed solution of (2) to be un- 
bounded. The necessary condition for the boundary of the domain of attraction of the un- 
perturbed solution of the coarse system to be a closed contour is that the sum of the Poincare 
indices of the singularities lying on the boundary of the domain of attraction should be zero. 
This follows from the fact that the boundary of the domain of attraction may contain only 
unstable singularities (just as in coarse dynamic systems the separatrix CannOt pass from a 
saddle to a saddle), and the boundary of the domain of attraction contains only the whiskers 
entering the saddles. A one-to-one correspondence must exist between the singularities with 
index one, and the saddles. 

We shall illustrate this by an example. It may occur in mechanical systems with rolling, 

that when k, (O)> k, (0). C, > ct. U< u+, the relations Y~(&)/N~ will have decreasing segments, alttough 
c,>mary,/N,. Then the character of the vector field of (2) will be the same as in case 1 
(for the monotonically increasing functions Yi(&)iN,). Now, the divergence of the vector field 
is negative only in a finite neighbourhood of the orrgin of coordinates. %y virtue of the 
character of the vector field (we have the phase trajectories moving from infinity to the 
origin of coordinates in the first and third quadrant) system (2) cannot have closed tralect- 
ories. The boundary of the domain of attraction cannot be a closed contour and It contains, 
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just as in lo, saddle points. In this case the sum of the indices of the singularities lying 
at the boundary is different from zero. 
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THE MOTION OF A SYSTEM OF VORTEX RINGS IN AN INCOMPRESSIBLE FLUID* 

M.A. BRUTYAN and P.L. KRAPIVSKII 

Hamiltonian formalism is developed in the problem of the motion of a 
system of coaxial vortex rings in an infinite , incompressible ideal fluid. 
An additional invariant of the motion representing the momentum of the 
surrounding fluid, is determined. In the case of two vortex rings the 
equations of motion are found to be completely integrable, and this 
explains the mutual slip-through of the vortex rings described qualitat- 
ively by Helmholtz. The influence of viscosity on the initial stage of 
motion is assessed. 

1. Hamiltonian formulation. The problem of the motion of vortex rings which has 
already been studied in the last century, represents the simplest case of a three-dimensional 
vortex flow. Even in this simplest case a theoretical analysis is possible only when the 
radius of the vortex ring is much greater than the radius of the vortex core. Let us consider 
a system of coaxial vortex rings moving through an infinite, ideal incompressible fluid at 
rest at infinity. We shall introduce a cylindrical r.r.0.-coordinate system where the z 
axis is directed along the general axis of the vortex rings. Let F, be the circulation of 
the vortex ring with index a,a=l,...,N,R, be the ring radius, o. the radius of the vortex 
core and za the longitudinal coordinate of the vortex. We shall seek the veclocity field 
outside the vortex rings in the form 

v = rot A (1.1) 

Symmetry considerations imply that A = A (r,z)es. Then from (1.1) we obtain 

dA 1 a(rA) 
n*=-d_' ",=TT- (1.2) 

Substituting (1.2) into the equation 

rotv = 5 I'$@-RJb(z-za) 
(I==1 

we arrive at the following equation for the vector potential A: 
N 

c r,6(r - R,)b(z - za) 
a-1 

(1.3) 

The right-hand side of (1.3) is obtained under the assumption that a/Rgi , and expresses 
the fact that the circulation along any closed contour enclosing the vortex with index .Z is 
equal to Fa. Since (1.3) is linear, it follows that the solution can be expressed as the sum 
of solutions for the isolated vortex rings, and has the form 
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